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The major results of this dissertation are theorems to the ef-

fect that certain classes of relational structures are not axiomatizable

by universal sentences. Some of the particular classes considered are

theories of measurement in the sense of the Scott-Suppes definition;

others are theories of measurement according to a natural generalization

of this definition. Part of the significance of the results is that

they are closely related to problems of proving representation theorems

in measurement theory. Ideally, one would like to have a finite list of

universal axioms which are both necessary and sufficient for guarantee-

ing the particular representation in which one is interested. The re-

sults of this thesis show that in many cases we are forced to settle for

more modest achievements.

What follows under the four headings below are some intuitive

statements of results whose precise formulations appear in the thesis.

(1) On Additive Conjoint Measurement

Given a relation (x
1,

xn ) > <3,
1

y
n
) , one cannot

find a finite list of universal axioms which are both necessary and

sufficient to guarantee a representation by real-valued functions,

op., i=1, n, such that, for all appropriate x1, "" xn' Y1' Yn'

iii



<xi

n n

, ...9 X ) > (y , v ) 4 E cp.(x.) > E cp.(y.)
n 1 Jn

i=1 i=1

(2) On a First-Order Segment of Decision Theory

Let C be a set of consequences, and let = (s s
n

)

be a finite list of states. Let acts be viewed as n-tuples of elements

from C . Then, on a preference relation, R , between acts, there can

be no finite universal axiomatization which is both necessary and suf-

ficient for the existence of a probability function p on S and a

utility function u on C such that, for all c
1

c' e C1

n
,

(ci

c
n

n n

9 ...9 c
n
) R (ci, cn) 4-4 E u(c.) p(s.) > E u(c!) p(s.)

i=1 i=1

(3) On Difference Systems of Measurement

Let D be a four-place relation on a set A Let I be the

binary relation' (abDba A baDab) Let T be the axiom

(aa,b,ceA) 1 1 (aIb) A1 (aIc) A1 (bIc) -4

(2a,b,c,deA) [ (aIb) A 1 (ale) A abDcd A cdDab] .

Then T is a necessary axiom for measurement on an interval scale.

Moreover, no finite list of universal axioms may be added to T in

order to obtain necessary and sufficient conditions for measurement

on an interval scale.

iv
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(4) On Multidimensional Scaling

Let D be a four-place relation on a set A . Let p be a

metric in Euclidean n-space. In multidimensional scaling one is in-

terested in representations by vector-valued functions f such that,

for all a, b, c, deA ,

abDcd ."'' p(f(a), f(b)) < p(f(c), f(d)) .

For both the "dominance" metric and the ordinary Euclidean metric there

can be no finite universal axiomatization which is necessary and suf-

ficient for the above representation.

v
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CHAPTER I

PRELIMINARIES

Notation and Basic Concepts

Let's begin to immerse ourselves in the needed notions of logic,

set theory and model theory by coming to terms with notation. Here is

a brief beginning list:

'iff' for 'if, and only if'

'st' for 'such that'

'Dom(f)' for 'the domain of the function f':

'Rng(f)' for the range of the DAnction f'

'Al' for 'A'

n+1
'A ' for 'A X An'

IP (A) for 'the power set of A'

for 'the set of real numbers'

IR
tA

for 'the relation R, restricted to the

set A'

'(x,y)' for 'the interval fteR /x < t <5731

'(x,y)' for 'the ordered pair ((x), (x,573)1

'(x1, xn)' for '(x1, (x2, x W
1, 2' n

In, 1 < n' for 'the projection functions from
0 into R given by

ni((xl, xn)) = xi'



We shall be dealing with relational structures of the form

PR = (A, R1, ..., Rk), where A is a non-empty set and R
1

, Ric

are relations on A of orders m
1,

mk , respectively. The set A

is the domain of the relational 'structure iii , and the sequence

m mk
1

mk) is the type of M . We shall let 16(111)' denote the

domain of M; will refer to the cardinality of the domain of the

relational structure M . If a is a sentence of first-order logic,

then 'a tr.W will indicate that o is true in the structure M .

The homomorphisms in Tarski [15] are not the same as those in Scott-

Suppes [9]. We shall deal with homomorphisms in the sense of the latter

paper.

Definition

Let' M= (A, R1, ...; Rk) and 1t = (B, S1, Sk) be two

relational structures of type (m
1

, oo/ mk ) Then a function f is

a homomorphism from M onto h iff

(i) Dom(f) = A, Rng(f) = B , and

m.

(ii) For all iefl, (x1, xm.
1

k3 and all ( ) EA ,

1

(x1, cmi) eR.
1

iff sf
1)'

f(xm.)) eS.
1

.

1

If also,

(iii) f is 1 - 1 ,

then f is an ks_rnori.sni between and Ii .

- 2



If K is a class of relational structures, all of which are of

a fixed type, then we shall follow Tarski 1151 and let I(K) be the

class of all isomorphic images of members of K . We shall let H(K)

be the class of all structures m for which there exists a structure

ha and a homomorphism h from it to It
1

. Similarly, H (K) will

be the class of all structures it for which there exists a structure

i'lVeit and a homomorphism h from 111 to h . Fihally, 'SW' will

deflate the class of all substructures of members of K . Where K is

a unit. class (g1) , we shall write 'I(M)I instead of 'IMO' , etc.

The structure it is embeddable in It iff
1
S(h) .

Now we are ready to start dealing with theories of measurement.

Definitions (Scott-Suppes)

A relational structure h is a numerical relational structure

iff b(h) = K . Let K be a clas of relational structures of type

(m1, mk) . Then K is a theory of measurement iff I(K) c:K

and there exists a numerical relational structure II st Kc:H
-1

S(h) .

Note that if It is a numerical relational structure and K = H1 S(h)

then K is a theory of measurement which is closed under substructures.

That is, I (K) c K and S (K) C: K.

Now that we have so many definitions at hand, perhaps the reader

would like to see a proof of something. In Scott-Suppes [9], p. 116,

there is the remark that "the class of all countable relational systems

-3



of.a given type is a theory of measurement; however, the numerical

relational system required is so bizarre as to be of no practical value."

As a little exercise in set-theoretical methods of proof, let's consider

an impractical generalization of the above statement.

.Remark

Let Wa be a cardinal number. Let K be a class of relational

structures of type (ml, mk) st , for every W4K, 1411 < wa . Then
W

fhere is a relational structure h such that Itil < 2 a and K(..7 IS

Proof: We may assume DieK -4, kW cHwa By this assumption K

is a set and, hence, can be indexed by an ordinal a of cardinality

< 2 Thus, let K = [fl lyea) . Introduce distinct elements aY

for yece TeWa . Define
Rh

as follows, where =
y 1

, RY, ...,
y

ri
Rh =.tal al )/(ii, i ) eRZ and yea'''') .

1
mh

mh

Let A = CaT.Iyea TeWa) It = (A, R1, ..., . We shall now show

that ICC=IS(11) . Pick any lila . Let A = (a/8eA
y
3

8

* _
= , itk *) . Then the map 8 al is an isomorphism

tA. to

between Rey and re . Hence, ill eIS(h).

qed.

2. Axiomatizability of Theories of Measurement

Let K be a class of relational structures all of the same type.



Let E be a set of sentences in first-order logic.

Definition. (Tar ski)

KeAC
A

[ K is axiomatizable (in the extended sense)] iff there

is a set E of sentences such that for all models 111 (of the appro-

priate type)

iteK 46 E tr M

To indicate that K is finitely axiomatizable, or, in other

words, that there is a unit set E as in the above definition, we shall

write 'KeAC' . The notion of universal axiomatizabiliy (in the ex-

tended sense), denoted by 'KeVCA' , is obtained from the above defini-

tion by stipulating that E be a set of universal sentences. Finally,

WIC is definable in the obvious way. Tarski [15] has elegant criteria

characterizing classes in UCA . In [16], Vaught develops a beautiful

characterization of classes in UC .

Since we shall almost always be dealing with measurement-

theoretic classes whose members are finite relational structures, we

need to use a slightly modified version of the apparatus set up by

Tarski and Vaught. The following well-known result shows why.

Theorem 1

Let K be a class of finite relational structures of a fixed,

finite type. Then the following are equivalent:



(i) (skew) [illeK -' 11111 < A 1(K) C K

(ii) KeAC

(iii) KeAC

So long as the cardinalities of the models in our theory of

measurement K are unbounded, we know that *CA . Therefore, what

we consider is axiomatizability in the following sense:

Definition

Let w be a cardinal number. A class K of similar relational

structures is axiomatizable up to Loa [KeAC(W0)] iff there is a sen-

tence a st , for all models DI (of the appropriate type) for which

I ml < wce

a tr iTt TileK

We define KeliC(W0) by stipulating that a be a universal sentence.

Scott and Suppes mention in [9] that Vaught's characterization of

classes in UC also works mutatis mutandis to provide a characteriza-

tion of classes in UC(w0) . In the following theorem to this effect

we write IS
n

to indicate the class of all relational structures

1). in SOTO such that 1111 < n We also write 11C(w)l to stand for

'the class of all models meK st 11111 < w

- 6-
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Theorem 2 (Vaught-Scott-Suppes)

Let K be a class of similar relational structures of finite

order. Then KeUC(a)a) iff

(i) S (K(Wcy)) c K

(ii) I (K(Lud) c K and

(iii) anew st for all ill st < Wcv ,

if S
n+1

C K , then MeK .

For the most part, we shall be interested in taking a fixed

numerical relational structure h and then considering the class K

of all finite relational structures in H-1S(h) Then we shall use

Theorem 2 to show KOC(W0) . The reader can easily satisfy himself

that, for each such result we obtain, there is the corresponding result

that H
1
S(1)0C Since we shall be interested mainly in classes K

such that lila im4 < wo , it will be convenient for us to use the

phrases 'K is axiomatizable' and 'K is universally axiomatizable' to

mean NeAC(w
0
) and KetIC(W

0
) , respectively.

3. Intuitive Comments

As Stevens says, "Measurement is possible only because there is

a kind of isomorphism between (1) the empirical relations among proper -

ties of objects and events and (2) the properties of the formal game in

which numerals are the pawns and operators the moves." ([10], pp. 20-

21.) The formal definition of a theory of measurement given by Scott

- 7



and Suppes is an attempt to render mathematically precise comments such

as Stevens'. If K C H
1
s(n) is a theory of measurement, then the mem-

bers of K reflect part (1) of Stevens' statement and the numerical

relational structure n reflects part (2).

A much disputed subject has been that of the measurement of

subjective entities. Insofar as the extreme viewpoint that there can be

no meaningful measurement of perceptions is concerned we have very con-

vincing refutations available right at our fingertips thanks to psycho-

physical results such as those dealing with cross-modality matching

(see Stevens [11]). One can, for example, under suitable laboratory

conditions, make measurements of and reasonably accurate predictions

about subjects' perceptions of the strengths of different vibrations

applied to their fingertips.

In [13] Suppes and Zinnes attempt to provide theoretical criteria

for the existence of measurement in general -- be it objective or sub-

jective. So that we may have something specific to talk about in dis-

cussing some of the intuitive aspects of their formal approach, let us

consider the four-place relation A on the real numbers given by

xyLzw iff x-y < z-w . Let 11 be the numerical relational structure

(2, A) . The intuitive idea of a homomorphism h from an empirical

relational structure (A, R) , R c A
4

into s(n) is that h provides

a means of assigning numbers to the entities that are described in the

structure (A, R) . A paradigm that one might keep in mind is the case

where A is a set of tones and the relation R is viewed as holding

8



for a quadruple (a, b, c, d> of tones in A iff a particular indi-

vidual has judged the difference in loudness between tones a and b to

be .not greater than the difference in loudness between tones c and d .

A representation theorem (see [13], pp. 4-8) for a theory of

measurement K C H
1
SOO is a result to the effect that certain axioms

suffice to guarantee the membership of a relational structure in K .

In our paradigm the intuitive idea behind such axioms is that if they

are satisfied by an individual making judgments about tones, then we

have a means of quantifying his perceptions. Thus, part of the Suppes-

Zinnes criteria for meaningful measurement is that there be a representa-

tion theorem with axioms holding in empirical structures determined by

experimental data. What is really desirable is the situation where an

empirical structure satisfies axioms which are strong enough to guarantee

one of several kinds of uniqueness results. Then the Suppes-Zinnes

theory asserts that measurement has been achieved by means of a particu-

lar kind of scale (cf. Stevens [10], p. 25 and Suppes-Zinnes [13], pp.

8-15).

With respect to the particular case of the relation x-y < z-w

and the numerical relational structure h , nobody has, as yet, succeeded

in finding a finite axiomatization that is necessary and sufficient for

guaranteeing membership of finitary structures (A, R) , R c A
4

in

11

71
S(h) . Sufficient but not necessary axioms appear in Suppes-Zinnes

[13]. For an infinite necessary and sufficient universal axiomatization

see Scott [8]. The question as to whether or not one can find a finite

- 9
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necessary and sufficient universal axiomatization has been answered

negatively by Scott and Suppes [9]. In the next chapter we shall con-

sider a proof of their theorem. Then we shall proceed to look at simi-

lar results for more general measurement-theoretic classes.

-:10



CHAPTER II

ESSENTIALLY ONE-DIMENSIONAL RESULTS

1. The Numerical Relation for Difference Systems of Measurement

We now turn to [9], where Scott and Suppes indicate a proof of

the following result:

Theorem 3

Let A be the four-place relation on I given by xyAzw iff

x-y < z-w . Let K be the class of all relational structures

lit = (E, D) , where DC X4 , 'MI < (00 , and Me1171S((L, A)) . Then K

is not axiomatizable by a universal sentence.

Our goal now is to establish the above theorem by using a lemma that

will come in handy later.

Terminology:

Let m be an odd number. Let positive numbers Pl, Pm

be given. Then the a's generated by the P's are the 2m numbers

determined as follows: a = 1 For 1 < j < m + 1 , a. = a. ,

J
+ P. .1 .1-1 -1

If m + 2 < j < 2m and j is odd, then aj = + P(j-1)/2 . If

m + 2 < j < 2m and j is even, then a
j 3

= a.
-1

+ P(j-m-1)/2 . Figure 1

pictures the a's generated by the P's .
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Given any model 111 = (A, D), D C A4 and any al, ..., ateA

ai,

< IA1, let us write 'fl to refer to the submodel

(A - {al, .o., a) f D4A
in - at)

) of 111 . We shall establish

Theorem 3 by showing that K fails to satisfy the third condition of

Theorem 2. To do this we need to show that, for all new , there exists

a model 1114K such that
[MI < WO

and Sn(VO C K . What we shall show

is that, for all odd meW , m > 3 , there exists a model 1114K,st ImI = 2m

and, for all aei(m) , eeK . One can convince himself with a minor

amount of effort that the above suffices to show K is not universally

axiomatizable. The construction of the model 111, given m , will de-

pend upon selecting "nice" distances P1, ..., Pm and then using the

a 1
s generated by the P's as the elements of S9(1i1)S9(1i1) For the rest of

the proof of Theorem 3, m will be a fixed odd integer > 3.

In the following lemma, we shall -be using distances P1, P
m

suchthateachP.is a power of two and is larger than twice the sum

of all the earlier Pi's . Because of the uniqueness property,of binary

expansions these conditions enable us to impose a strong limitation upon

the number of equal-length relationships among intervals of the form

(ak, at), wheke ak and at belong to the set of generated by

the P's . An interval such as (ak, a,) will be referred to as an

atomic interval iff - ak P. , for some i, 1 < i < m .



Lemma 1

Let P1, ..., Pm be powers of 2 such that if 1 < i < in - 1

and Pi = 2d , then Pi
+1 > 2

+2
Let A = {al, ..., a2m) be the set

of a's generated by the P's . Let x, y, z, weA such that x > y ,

z > w, z > x, and x -y = z -w . Then either

(i) (y, x) and (w, z) are atomic intervals or

(ii) (y, w) and (x, z) are atomic intervals or

(iii) (y, x) = (al, am) and (w,.z) =.(am+1' a2m)
or

(iv) (y, x) = (a1, am+1)
and (w, z) = (am, a2m) .

Proof

Let £ = [(t, 'u) / t, ueA, t < u < a)-- m

6 = {(t, u) /t, ueA, am+l t < u)

S = {(t, u) /t, ueA, t <
am, am +1 <

u}

Then, for all t, ueA st t < u , (t, u) E £ U R. U S . Because z > x

and if (t, u)ES, (t', u')e.Z U 6i. , then u -t > u' -t' , we need only con-

s ider the following cases:

(1) (y,x) , (w, z) E.Z or (y,x) , (w, z) e6L .

(2) (y, x) E , (,z) 6L

(3) (y,x) , (w,z) ES .

We show first that case (1) is contradictory. It is clear from

Figure 1 that no Pi can appear more than twice between any two points

ai, a.eA . And, because x -y and z -w have identical binary expansions,

we know that between x and y and between z and w there must be



the same powers Pi occurring the same number of times. Hence, from

case (1) we may conclude that (x, y) = (z, w) , and this contradicts

the assumption x < z .

Case 2)

Let 4, be the least integer such that P appears between x

and y in Figure 1. Let g be the greatest integer such that Pg

appears between x and y in Figure 1. If = g , then (y, x) and

(w, z) are atomic intervals; qed.. Hence, we may assume 4, < g . Then

P
4,

and P
4,+1

must appear between x and y . Hence P4 and Pt4.1

4,must appear between z and w . If 1 <: <
m21 mi42

, then P
4,41

occurs between P
4, 2

and P
4,+1

m41
in (w, z). If < 4, < w-1 , then

.111, MEND

P m-1 occurs between P1 and P
4,+1

in (w, z) ; but this is a con-
4,- (T)

tradiction, given the definition of 4, . Hence,

m424,41 m+3 m+1
g > > 2 > 2 > . This means P

m 3.
and P

m 1
occur in

2 2

(w, z). Therefore, P
1

occurs in (w, z) and 4, = 1 . Similarly,

g = m - 1 . Therefore, (y, x) = (al, am) and (w, z)=(am+1, a2m)

qed.

Case (3)

y am, am41 x, w <S am, am41 z . Also

z -w=x-y<z-y. Hence y<w. Thus (y, w) ea, z) di and

w -y=z-x. So, as in case (2), either (y, w), (x, z) are atomic

and we are done with the proof or else (y, w) = (al, am) and

(x, z)=(am41, a2;11). Then (y, x) = (al, ammo.) and (w, z) = (am, a2m) .

qed.

- 15-



I

We now proceed with the construction of the model 111 . Figure 2

shows why, for m = 5 , M fails to be a member of K . Any homomorphism

from M onto a subsystem of (lt, A) must preserve the distances

P
1'

P
2'

P
3'

P
4

between a and b and also the distances

P
3'

P
1'

P
4'

P
2

between c and d . Therefore, in order that M

belong to K , the distance fiom a to b in M must equal the dis-

tance from c to d in M . By constructing M so that (a,b) is

shorter than (c,d) , we ensure that 114K .

Let A be as in Lemma 1. Let a = a
l'

b = am, c = am4

.

d = a
2m

Let B
0

= ((x,y,z,w/ eA
4/x - y < z - w) . Let

,

B
1

= ((x,y,z,w) eA
4
/x - y = z - w and (x,y,z,w) is not a permutation

of (a,b,c,d)} . Let B2 = ((b,a,d,c), (b,d,a,c), (c,d,a,b), (c,a,d,b)j .

Let D = BO U B1 U B2 and take 11t = (A,D) .

Claim; MiK

Proof by contradiction. Suppose there is a homomorphism

f:A K st , for all x,y,z,weA , (x,y,z,w) eD iff

f(x) - f(y) < f(z) - f(w) . Then

f(a2) f(a1) f(am+3) f(am42)

f(a3) f(a2) f(am+5) f(am44)

-
f(a4) f(a3) f(am+7) f(am+6)

f(am) - f(am...) (=f,a2m_i) - f(a2m_2) .

Hence, f(am) - f(al) = f(a2m) - f(am41) Therefore, (d,c,b,a) eD .

* Contradiction. qed.

- 16-
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ai

a.Claim: For all a. , m eK .

Proof: Pick e > 0 such that

2e<min [(z - w) - - y) /(x,y,z,w) eBol

We shall define a homomorphism

f: A - (a.) R according to which of the three following

cases holds:

(i) ie [1, m, m +1, 2m) .

Then, for all x,y,z,w eA -

Hence the identity function

fa
i

, (x,y,z,w) eD x - y < z - w .
a
i

f embeds 111

qed.

(ii) 1 < i < m . Then define f by

a. +e , if j < i

f(a.) j

a. , if j >

Suppose x,y,z,w eA - (ail , and (x,y,z,w) eD . We shall show that

f(x) - f(y) < f(z) - f(w) . Note first that, if (x2y,z2w) eB0 , then

f(x) - f(y) < f(z) - f(w) , because

z

Z

- w < f(z) - Ef(w) - e]

- w - e < f(z) - f(w)

Hence, if (x,y,z,w) eB0 ,

f(x) - f(y) <x+e- y<z-w- e< f(z) - f(w) .

- 18-



Suppose now that (x,y,z,w) eB1 .

Then x-y=z-w. We may assume that x - y > 0 , so x > y and

z > w . If z = x , then f(x) - f(y) = f(z) - f(w) . Thus, we may

assume z > x . Then, by Lemma 1, we may conclude that

f(x) - f(y) = f(z) - f(w) , because, for any atomic interval (t, u) 2

where t, u (ad , f(t) - f(u) = t - u .

Finally, suppose that (x,y,z,w) eB2 . To show that

f(x) - f(y) < f(z) - f(w) it suffices for us to verify that

f(b) - f(a) < f(d) - f(c) . By the definition of f ,

f(b) - f(a) = b - (a + e) < b - a = d - c = f(d) - f(c) .

Hence we have completed the proof that, for all x,y,z,w eA - (ad

if (x2y2z2w) eD , then f(x) - f(y) < f(z) - f(w) .

Now suppose that x,y,z,w eA - (ail and f(x) - f(y) < f(z) - f(w).

We must show (x,y,z,w) eD . If z - w < x - y , then, as above,

f(z) - f(w) < f(x) - f(y) , which is a contradiction. Hence,

x - y < z -w. If x - y < z - w , then (x,y,z,w) eD . qed.

Thus, we may suppose that x-y=z-w. If (x,y,z,w) is not a

permutation of (a,b,c,d) , then (x,y,z,w) eB1 C D . qed. Hence, we

may assume that (x,y,z,w) is a permutation of (a,b,c,d) .

Since x

either

or

- y = z - W 2

(x,y,z,w) e ((b2d2a2c), (b,a,d,c), (c,d,a,b), (c,a,d,b)}

(x,y,z,w) e ((a,b,c,d), (a,c,b,d), (d,b,c,a), (d2c2b,a)) .

- 19 -



The latter case is ruled out, since f(a) - f(b) > f(c) - f(d). Hence

(x,y,z,w) eB2 C D . qed.

(iii) m < i and i tm + 1, 2m)

In this case we define f by

a. , if j < i

f(a.) =

aj +e, if j > i

Then, as was done above, one can verify that, for all x,y,z,w eA - (ai) ,

(x,y,z,w) eD iff f(x) - f(y) < f(z) - f(w) .

Hence we have completed the proof of Theorem 3. Let us now turn to some

related results pertaining to measurement theory and decision theory.

We shall consider a well-known subclass of the structures of the

form B = (A,p) , where A is a non-void set and p: A2 -0 & .

Definition (Suppes-Zinnes [13], pp. 48-49)

B = (A,p) is a B.T.L. (Bradley-Terry-Luce) system iff, for all

a,b,c eA. ,

(i) 0 < P
ab

(ii) P
ab

+ P
ba

= 1 , and

P
ab

P
bc

P
ac

P
ba

P
cb

P
ca

- 20-



Corollary 1

Let K be the class of structures (AO)) such that A ,

4
lAt <

0
D c A. , and there exists a B.T.L. system 63 = (A,p) such

that, for all x,y,z,w eA 2

xyDzw iff P < P
xy zw

Then K is not axiomatizable by a universal sentence.

2. A Corollary about Additive Conjoint Measurement

In Chapter 6 of a forthcoming work by Krantz, Luce, Suppes, and

Tversky [2], tentatively titled Foundations of Measurement, structures

of the form (Ai, ..., Al, > ) are considered, where A1, 2 A
n

are

non-void sets and > is a binary relation on A
1
x xA

n
. A five

axiom representation theorem is given providing sufficient conditions

for the existence of real-valued functions pi on Ai , i = 1, n ,

such that

(1) For all pi, qi eAl
,

(131, .." Pn)
((1.12 "" q

n
) if f E p.(p.) > p. (q.1 ) .

i=1
1 1

i=1
1

Let us now look at the kind of first-order language we shall

need in order to deal with questions of axiome.tizability concerning

structures of the form (A1, ..., An, > ) . We consider a language

in which there are n unary relation symbols Ri, i = 1, ..., n, and

one (2n)-ary relation symbol S Each Ri corresponds to the

-21 -



membership relation for the set A
i

, and S corresponds to the rela-

tion > . We now shall use Theorem 3 to establish:

Corollary 2

Let It be the class of all finite models (A, Al, ..., A
n

, B)

in £ such that if Al, ..., A
n

are non-void, then there exist repre-

senting functions cpi:Ai A as in (1). Then K is not axiomatizable

by a universal sentence.

Proof:

As before, given an odd m > 3 , we need only find a model

iiti = (A, A1, ..., An, B) such that IAI = 2m, 114 , but, for all aeA ,

MaeK . Let A be as in Lemma 1. Let D c A4 be as in the proof of

Theorem 3. Let Al = A2 = A, Ai = (al), 3 < i < n . Define the rela-

tion B c A
2n

by

(pi, pn, ql, qn) eB iff (pl, ql, q2, p2) eD .

Now let M = (A, Al, ..., An
, B) .

Claim: 14K .

Suppose the contrary. Then there are functions cpi as in (1). Hence,

(2) For all pl, p2, ql, q2 eA ,

(P1' q1, q2, P2) iff cP1(P1) cP2(P2) cP1(c11) cP2(c12)

- 22 -



Pick any ak, at eA .

Since (ak, at, ak, at > eD ,

That is,

cP1 (ak) + cP2 (at) ?- P1 (at) + P2
(ak)

cP1
(ak)

P1 (at) ? cP2 (ak) cP2 (at)

Also, (at, ak, at, ak) eD . Hence

Thus,

Hence,

In particular,

cP1 (at) + cP2 (ak) ? P1 (ak) + cP2 (at)

cP2
(ak)

P2 (at) ? Pl
(ak) Pl(at)

cP1 (ak) P1 (at) cP2 (ak) cP2
(at,)

for all 1 < k, t < 2m .

cP2 (ak) P1 (ak) + cP2 (al) cP1 (al) 9

Therefore, by (2),

For all

for all 1 < k < 2m .

p1, P2' q1, q2 eA

q2, p2) eD
if f 'Pi

(p
1 ) + cp1 (P2 ) ? 'Pi (q 1 ) -"Pi (q2)

But then the function f = - cpi homomorphically embeds (A,D) in

(11,46), which is a contradiction. Hence, 114K. qed.

Now, by establishing the following claim, we shall complete the proof

of Corollary 2.

- 23-



Claim: For all aeA , 41
a
eK .

a

Since M1eK , we may assume a a
1

. We know that there is a function

f embedding (A - (a) , DtA (a)) in (1,A) .

Let pi = cp2 = -f E 0 , all 3 < < n .

Then, for all pi, qi eA - (a) 2

n n

(p1, pn, ql, qn> eB iff E cp.(p.) > E cp.(q.) .

1=1

Hence, eeK. qed.

3. A Corollar Pertainin: to Decision Theor

We shall now use Theorem 3 to prove a non-axiomatizability

result related to decision theory. Our framework will be a first-order

rendering of only a small portion of the theory developed in Savage [7].

Let us now consider the version of Savage's representation theorem which

is stated in Luce-Raiffa [3], pp. 300-304. A collection 0 of acts is

given; members of (4 are functions defined on a set 8 of states and

having values in a set C of consequences. Events are subsets E of

8 . There is a binary relation > of preference between acts. Savage's

representation theorem provides powerful second-order axioms guarantee-

ing the existence of a probability function p defined on the events

and a utility function u defined on the consequences such that the

following holds:

(3) Let CE ) 1 < i < m and (E!) 1 < j < n be two partitions of SS.

Let A, A' be acts such that A(s) = ci, for all seEi and

410 aM

A' (s) = cl

- 24 -



for all sal. . Then

m n

A > A' iff E u(c.) p(E.) > E u(c!) p (V.) .

" j =1
Suppose now that we confider only a finite set of states

S = fs s
n-

Each act may then be viewed as an n-tuple

(c1, c
n
) of consequences. We might wonder about the question of

findiag axioms on a binary relation > between acts such that functions

p and u exist satisfying (3). Then we would have:

(4) For all

(Cl

c. c "" nc' ce...,
n'

n n

p Cn
_> > (CI c1) iff E u(c .)p(s.) > E u(c!)p(s.) .

i=1
1 1

i=1

In proving that there is no first-order universal axiomatization giving

necessary and sufficient conditions for the existence of a probability

and a utility function satisfying (4), we loss no generality by dealing

with the binary relation > on en as a (2n)-ary relation on C .

Corollary 3

Let S = (s
1'

s
n
) be a fixed set of n states. Let K

be the class of all finite models (C,K) such that R G C
2n

and there

exist real-valued functions u on C and p on S such that



--"--............................................

(i) p(si) > 0 , i = 1, ,. . , n

n

(ii) E p(s.) = 1 , and

i=1 1

(iii) For all c
1

1,1 ^I CP...a C p ...Jo %,... ,a'w,n n

"

n n

(c1, *sop C p I ...,
n

C1' cln ) eR iff E u(c.1 )p(s.) > E u(c!)p(s.1 )

1=1
1 1

Then K is not axiomatizable by a universal sentence.

Proof:

Let A and D be as in the proof of Corollary 2. Let Rg= A

be given by:

(pl, ..., pn, q1, ..., qn) eR iff (p1, q1, q2, p2) eD .

Let 111 = (A,R) .

Claim: 44K .

Suppose the contrary. Then there exist functions p and u

satisfying (i)-(!ii). It follows that, for all p1, p2, q1, q2 eA ,

(pl, q1, q2, p2) eD iff u(p1) P(s1) + u(p2) p(s2)

u(q1) P(s1) +
u(q2) p(s2)

Let cpi : A -, 1 by cpi (a) = u(a) P(si) ,

Then, for all P 9
1

P2' g
-1'

o'
-2 eA '

- 26 -
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(pl, ql, q2, p2) eD iff "pi(pi) +cp12(p2) > cpi(cli) + p2 (q2)

Thus, exactly as was done in the proof of Corollary 2, we may reach a

contradiction.

Hence, 4K. qed.

Claim: For all aeA , eeK

Choose a homomorphism f from (A - (a) , Dt.A - ta)) into 4, A) .

Let u = . Define p : S -4 It by p(si) = p(s2) =1 , p(sj) = 0 ,

3 < j < n . Then, for all pl, ..., pn, ql, ..., qn eA - (a) ,

(pi,. "" pie °IV- "62 qn)ek iff
(p1,

`IV q2, P2 >
eD

iff f(P1) f(c11) < f(c12) f(P2)

iff u(pi) + u(p2) > u(qi) + u(q2)

n n

iff E u(p.)p(s.) > E u(q.)p(s.)
1 1 1

Hence, IllacK. qed.

Thus, we have completed the proof of Corollary 3.

4. A Sim le Re resentatio Theorem with Universal Axioms

In the previous section we showed that within a certain frame-

work for talking about a preference relation on acts one cannot find a

finite list of universal axioms which give necessary and sufficient

conditions that the ordering of acts be in accord with the principle

of maximizing expected utility. Other criteria that have been proposed

-27-



are discussed and characterized in Minor [5]. We now mention that

Wald's minimax criterion may be viewed in terms of a representation

theorem. The following result states that there is a universal sentence

which is a necessary and sufficient condition that a preference relation

on acts be in accord with the Wald criterion. Note that, with respect

to the class K below, the number of states of nature is fixed, al-

though structures in K may have domains (sets of consequences) of

arbitrary finite or countably infinite cardinalities. We need the con-

dition that the number of states of nature be fixed in order to know

that the members of K are of the same type. This condition also means

that (i), (ii), and (iii) below are equivalent to a single universal

axiom.

Theorem 4

Let n be a fixed positive integer > 2 Let K be the class

of all ' tructures (A, < ) such that A is a non-empty denumerable set,

< is a binary relation on An , and there exists a function u : A -0 R

such that, for all c
1,

c
n

c
1

, c'.eA ,

(c1, c
n
) < (c'

cn
') iff min (u(c

1
), u(c

n
)) <

min fu(c1) *so y u(c'))

Then K is axiomatizable (up to w1) by a universal sentence. More-

over, for a given structure in K , the function u is unique up to a

monotone (non-decreasing) transformation.
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Proof: It is straightforward tc show that the following is a finite

universal axiomatization for K

(i) < is transitive and connected

(ii) (a1,
.." al) (1)12 ii" 1)1)

A (a1, al) < (a2, a2) (an, an)

A (b1, ..., bi) 5. (322 odpa, b2) .14S (bn, bn)

(a1, a2, dpoo, a
n
)-4-= (b

12
b2, b

n
)

(iii) Let a, T be permutations of {1, 2, n}. Then

a(a1, a2, an) < (b1, b2, °"2
b
n

) (a
a(1)2 "" aa(n) )

< (bT(1)2 ""
b
T(n) )

5. A Numerical Dissimilarity Relation Imposed by the

Absolute Value Metric

Some terminological clarification may be in order with regard

to the above heading. The name 'similarity relation' is sometimes used

to denote relations that are reflexive and symmetric. For this reason

we have chosen to use the phrase 'dissimilarity relation' in order to

refer to relations that are in some manner related to judgments about

similarities and dissimilarities between objects. We shall now consider

the dissimilarity relation Ix - YI < Iz wl on the real numbers. Our

goal is to prove.



Theorem 5

Let A be the four-place relation on 1 given by xytzw

iff yl < lz 141- Let K be the class of all models ill = (A,D)

such that IN < Wo , Ds A
4

, and Tn is homomorphic to a substructure

of (R,A) . Then K is not axiomatizable by a universal sentence.

Proof: As before, let m > 3 be an odd integer. Let A,a,b,c,d be

as in the proof of Theorem 3. We shall construct a model ill = (A,D)

such that 11141C , but, for all xeA , illxeK .

Let B
0

= [(x2y,z,w) eA
4
/ix - yl < lz - wl)

.
B
1

= [(x,y,z,w) eA
4
/Ix - yl = lz - wl and (x,y,z,w) is not

a permutation of (a,b,c,d))

B
2

= [(a,b,c,d), (a,b,d,c), (b,a,c,d), (b,a,d,c),

(a,c,b,d), (a,c,d,b), (c,a,b,d), (c,a,d,b))

Let D = BO U Bl U B2 . Take 111 = (A,D) .

Claim: 1114 .

Suppose f embeds ill in (1,A). We first show by induction that f

must be strictly monotone on (al, ..., a2m). Since (al, a2, al, al) D ,

we know f(al) f(a2) . Suppose f(al) < f(a2), k > 3 , and

f(ai) < f(ai41)
,

for 1 < i < k - 2 . We shall show that

f(ak_i) < f(ak) . Suppose not. Then



f(al) < f(ak) 0 < f(ak) - f(al) < f(ak_i) f(al)

-
If(ak) f(adi if(ak-1) f(a1)(

<ak' al' ak-1'
al) eD

* Contradiction

f(ak) < f(al)
0
< f(al) f(ak) < f(ak_i) f(ak)

(al, ak,
ak -1'

ak) eD

* Contradiction

Hence, f(ak_i) < f(ak). qed.

Similar reasoning shows that if f(a2) < f(al) , then

f(a2m) < f(a2m_i) < < f(a2) < f(ai). But, because f is strictly

monotone, one can show, as in the proof of Theorem 3, that we must have

If(am) - f(a1)1 = If(a2m) f (am41) I

Therefore, (c,d,a,b) eD.

* Contradiction

Hence, 1t K. qed.

a.

Claim: For all a.eA leK .

1

Let s > 0 be such that

2e < min (12 - wl - lx yl/(x,y,z,w) e

DefinefonA-(ajexactly as was done In the proof of Theorem 3.

Then f is strictly increasing; moreover, for all x,y,z,w eA - (ail ,
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(x,y,z,w) e Bo -0 If(x) - f(y)I < If(z) - f(w)I

and (x,y,z,w) e Bl if(x) - f(y) I = If(z) - f(w) I

Finally, one can check that If(a) - f(b)I < If(c) - f(d)I and

I f(a) - f(c)I < If(b) - f(d)I . Therefore, for all x,y,z,w eA - (ad ,

(x,y,z,w) eD -0 If(x) - f(y) I < If(z) - f(w) I .

Now suppose that x,y,z,w eA - tail and if(x) - f(y)I < If(z) - f(01 .

We need only show that (x,y,z,w) eD . If Iz - wl < Ix - yl , then

(z,w,x,y) e Bo and, by the above, if(z) - f(01 < If(x) - f(y)I ,

which is a contradiction. Hence, lx - yl < lz - wl . Suppose

(x,y,z,w) 4D . We shall obtain a contradiction. By our supposition

Ix - yl = Iz - wl and (x,y,z,w) is a permutation of (a,b,c,d) .

Since (x,y,z,w) B
2

, we may conclude that (x,y,z,w) e ((b,d,a,c),

(b,d,c,a), (d,b,a,c), (d,b,c,a), (c,d,a,b), (c,d,b,a), (d,c,a,b),

(d,c,b,a)) . From this it follows that If(x) - f(y) I > if(z) - f(01 .

* Contradiction

qed.

This completes the proof of Theorem 5. For convenience in deriving the

higher dimensional results of Chapter III, we note the following conse-

quence of the above proof.

lemma 2

For all odd m > 3 , there exist 2m real numbers

0 < a
1

< a
2

< < a
2m

and a four-place relation D on

- 32-
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X = (al' "" a
2m

) st the model It = (X, D) is not in K , yet, for

all e > 0 , every 2m - 1 element submodel of 1V is homomorphic to

a substructure of (12 A) by a homomorphism f such that, for each

aie)9(0,f(a.1
1

)e [a., a. + e) .

6. A Corollary Pertaining to Utility Differences

Structures of the form (A, Q, R) , where A is a non-void set,

Q C:A
?

, and R C A
4

are considered in Suppes-Winet [12]. The set A

has as its intended interpretation a set of alternatives; Q is inter-

preted as a preference relation on A and R as a relation holding

between alternatives x,y,z,w iff the difference in preference between

x and y fails to exceed the difference in preference between z and

w . Suppes and Winet present an axiomatization sufficient for the

existence on A of a representing utility function u which is unique

up to a linear transformation. As is also the case in the von Neumann

and Morgenstern approach to utility, the axioms are stated outside the

framework of a first-order language. The following result rules out the

possibility of a finite universal axiomatization within a first-order

language.

Corollary 4

Let K be the class of structures (A, R, Q) such that A is

a non-void finite set, R C A4 , Q C A
2

and there exists a function

u:A -0 a st , for all x,y,z,w eA ,

' .4

- 33-



(i) xQy iff u(x) > u(y) and

(ii) xyRzw iff I u (x) - u(y)I < lu (z) u (w) 1

Then K is not universally axiomatizable.

Proof:

Let A, D be as in the proof of Theorem 5. Let E C A
2

be

given by xEy iff x > y Let M = (A, D, E) . Then 1114K ; but,

for all aeA , tea . qed.

7. ALLEisht-Place Dissimilarity Relation

The intuitive background behind the next theorem is a special

kind of conjoint measurement situation. We may imagine that a subject

is considering various objects, each of which is split into two parts,

and that he is making dissimilarity judgments on the basis of how much

there is of some specific quality within each of the two parts of the

objects under consideration.

Theorem 6

Let 0 be the eight-place relation on the real numbers given by

xl 571 x2 y2 0 zl z2 wl w2 iff

i(x
1

- y1) 2 + (x2 y2



Let K be the class of models M = (A, D) such that

Iml < W
0

, D C A
8

and the H
1
S((1, 0)) . Then K is not axiomatizable

by a universal sentence.

One can prove Theorem 6 by judiciously selecting powers of two

for Lemma 1 so that if a
l'

a
2'

0
l'

0
2

are any distances between pairs

of a's generated by the P's and a
2
+ a

2
= 8

2
+ 0

2
, then a

1
= 0

11 2 2

or 0
'1

= 0
2

. Then one can proceed along the lines of the proof of

Theorem 5.



CHAPTER III

GENERAL RESULTS IN n-DIMENSIONS

1. The Ordinary n-Dimensional Euclidean Metric

In this chapter we give up the idea of embeddings only into the

real numbers and turn to questions of embeddings in In . We shall be

concerned with the dissimilarity relation An imposed by the Euclidean

metric in 1
n

, which we shall denote by '

Definitions

Let n be a positive integer.

, or simply by '

Let x = (x
1,

x
n
), y = (y y

n
) eR

n

Then
x,y

n
n

E (x. - y.)
2

j=1

Let 'n be the four-place relation on In given by

. Let K
n

be the class of all models M = (X,
x,y z,w

that I11ti1 < D C X4 , and m is homomorphic to a substructure of

(In,

We shall be after the result that none of the classes I< ,

xyAnzw iff

D) , such

n = 1, 2, ... is axiomatizable by a universal sentence.

The enterprise of multidimensional scaling involves the hope

- 36 -



that one can measure "psychological distances" by using mathematical

distances. One would like to represent objects as points in Rn so

that experimental. dissimilarities between the objects are reflected by

the distances between the points representing the objects. An embedding

in In may be thought of as having the meaning that there are n

properties on the basis of which discriminations between the objects

are being made. As an example, let us suppose that m is an empirical

relational structure stemming from experimental dissimilarity data.

Suppose that h is a function which homomorphically embeds DI in the

I

relational structure
n

kg , A
n

) . Then we may think of h as indicating

somethihg to us about the. relative importance of the n stimulus prop-

erties. An extreme situation would be-the case where 111 (x) is constant

for all xeRng(h) ; here we would have grounds for concluding that the

first property of the stimuli had no influence upon the behavior of the

subjects in the experiment.

Now let's turn away from psychological intuitions and consider

some mathematical ones, viz., the geometric intuitions that lie behind

the proof of Theorem 7 below. We want to show that the classes Kn

fail to satisfy the third condition of Theorem 2. We shall build up

models tri out of points such as a
1

, a2m in Lemma 2. Our aim

will be to show that any homomorphism h from M into (it
n

, A
n

) must

be such that h(a
1
), h(a

2m
) are collinear, because, given this,

we may then use our one-dimensional results to prove that 14K
n

. In

order to build fl so that the collinearity property holds, we shall



adjoin n elements bl, b
n

to the domain of the model for the

one-dimensional proof and then we shall appropriately extend the four -

place. relation D to 1-he new domain.

Figure 3 shows the ideas behind the models used in the proofs

for K2 and K3 . In the case of K, we adjoin points b
1

and b
2

to al, a2m and extend the relation D by stipulating that e&h

of the al's be equidistant from b
1

and b
2

. This condition

obviously forces the collinearity of h(a1), h(a2m) , for any

homomorphism h . Similarly, in the case of K3 , we arrange things

so that, in I , h(a
1
), h(a

2
m) must be on a line perpendicular

to the plane of the equilatere- triangle having vertices h(b1), h(b2),

h(b3) .

We now begin the proof of

Theorem 7

Let n be a positive integer and let Kn be as defined at the

beginning of this chapter. Then Kn is not axiomatizable by a universal

sentence.

The first thing we shall consider is the proof of an

n-dimensional analogue to the theorem that the locus of points in a

plane that are equidistant from two distinct points is a straight line.

Lemma 3

Let ql, qn be n distinct points in In such that
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L)

b2

I I I

01 02 - 02m

L > a 2m

FIGURE 3

The relations between the adjoined points b1, ..., bn

and the points al,
..,,

a
2m

, for n = 2 and n = 3
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qi2 qj che
q,, for ikj,kkt. Let x,y,z a

n
such that, for

all i, j < n, qi,x = qj,x, qi,y = qj,y, qi,z = qyz . Then x, y, and

z are collinear.

Note that beyond It

3
one needs to impose some conditions in

addition to qi qj, i j and qi,x = qj,x, qi,y = qi,y, qi,z = qyz

in order to force collinearity of x, y, and z . To see this, take

q1 = (3,0,0,0), q2 = (2,0,015), q3 = (1,0,0,2 42), q4 = (3W2,0,0,3112),

x = (0,3,4,0), y = (0,5,0,0), z = (0,0,5,0)

Now let (§A):; be any sequence of elements in [-1,1) . Let

v be any positive real number. Define the pairs (ma, nn) of complex

numbers, for A = 1, 2, ... as follows:

(ml, n1) = (0, v)

v
(m2, n2) s 2

14/3

2 7 /

2 2 2
mA - nA + 2nAmA_1 - mm

nA+1 2m
A

2

mA+1 (11A+1 mkt)

2

One can prove by induction that mk and nk are real numbers.

Define aftel
A+1

, A = 0, 1, 2, ... by ab = (0), ai = (ml, g1r1) ,

= (0 gAm g
A-1

n
".2 g2n3, g1n2)

Given A , let (r
i
)1-

1
be the sequence of ft+1 points in k

ft+1

i=1

defined by
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Lemma 4

11.(r.) = 0 , for j = 1, ..., A-i+1
3 1

ni(ri) = (ai_i) , for j = A-i+2, A+1 .

be points in ift
+1

suchLet vest, v > 0 Let q1, qA4.1

that q., q. = v, i / j . Then there exists a 1-1 function T on

le41 into itself such that both T and its inverse preserve lines and

Euclidean distances and there exists a sequence (§ )
i

of
i =1, ..., A

elements from (-1,11 having the property that, for rl, rA44

asabove,TG)=r.,1 < i < +1 . Further, if Pa
A+1

and

P,ri = P,r1 , i=2, AS1 , then n.(1) = §A42_j N.1.3_ 2 < j < AH-1 .

3

The only trick involved here is to take T so that

n.3 (T(q.)) = 0, 1 < j < 4 42-i . Then, by induction, one can verify that

there is a sequence (%..) so that T(q.) = r., 1 < i < A41 . Since

-1 preserves lines, it is clear that Lemma 3 follows from Lemma 4.

Lemma 5

For all n > 2 and, for all v > 0 , there is a real number

m, 0 < m <
v
2

, and there are points q, q
1

, qn an such that

(i) 111(q) = 0, 111(qi) = 0, 1 < i < n

(ii) q., q.
3

= v, i j

(iii)

(iv)

cbcf- =
)

q
1

, 1 < < n

2 2 .2
(1,44

1
= v - m



Lemmas 3, 4, and 5 provide us with sufficient machinery for

establishing

Lemma 6

Let n, m be positive integers such that m is odd. Then

there exists a model M = (B, , I B I

4
1, m1= 2m n, E c: B , l<

n
such

that there exists a submodel M
0

of M such that 2m < IM
0

I < 2m + n ,

M
0
iK
n

and if h is a submodel of it
0

such that In! 1 ,

0

then IlgK
n

.

The proof of Theorem 7 follows immediately from Lemma 6.

Pick any n , m as above; let A = (al, ..., a2m) and D be

as in Lemma 2. Choose bl, bn so that a2m < bl < < b
n

.

Let B =AU (b
1, .."

b
n
I Let L be a real number larger than a

2m
.

Apply Lemma 5 with v = 2L and obtain points q, q
1

, q
n
eR

n
,

A

mei . Choose y > 0 so that ya
2m

< m . For each xeB , define

x
*
eR
n

as follows:

* ,

Forl<i<2mlleta.=(Ya., n
2
(q), nn(0)

For
1
.

1

Let E = DU( (x,y,z,w) eB
4

- A4/ x*, y* < z*, w*) .

Let M = (B, E) . We shall now verify that lit satisfies the conditions

in the statement of Lemma 6.

Claim 1: MO(
n

.

Suppose the contrary. Then there is a homomorphism f:B In such that,



for all x,y,z,w eB ,

(x,y,z,w) GE iff f(x), f(y) < f(z), f(w) . i.

For i = 1, n , let ql = f(bi) ; and, for i = 1, 2m , let

a! = f(a.1 ) . Because (b
i

, b., b
k

, b
t

) and (bk, b bi, b
j
) eE , if

j

i j, k t , we know ql, = i # j, k # . Also

q!, ak = q!, ak ' , 1 < j < n, 1 < k < 2m Hence, by Lemma 3,
j

f(a ) . . f(a
2
ni) are collinear. Therefore, there exist points

(xl, xn) (y1, ..., yn) GR
n

, and numbers aiel , 1 < i < 2m
n

2

suchthatf(a.).= (x
1

+ a. y
1'

x
n

cv.+ y
n

) . Let z= E yt
i " t=1

and defineg:A-41.byg(a.1)=ce.z. Then, for all a., a
j,

a
k'

a eA ,

(ai, a., a
k

, a ) eD iff f(ai), f(aj) < f(ak), f(at)

iff E y2
(a

t
.-0%)

2 E< y,
2 ( )

t=1 t=1 `

iff Ig(ai) - g(aj) I < I
g (alc) g (at.) I

Therefore g is a homomorphism from (A, D) into (R, Al).

Contradiction. Thus we have established Claim 1.

Lemma 7

There exists e > 0 such that if f is any map from A into

lk
forwhichf(c..)e la., a. + e) and if f* is the map from B into

kn oftained from f by f*(b.) 1 < i < n ,

f*(a.)= (yf(ai ), 12
'

(q) n (q)) , 1 < i < 2m , then, for all
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Proof:

x*, y* < z*, w* iff f*(x), f*(y) < f*( ), f*(w)

Take e < min ((la.
1

- ajl /i # j) U - a
2
mj)

Pick any <x,y,z,w) B4 - A4 . We shall indicate how one can

verify that

and

x*, y* < z*, W* f*(1) 9 f*(Y) < f*(z), f*(w)

x *, y* = z*, -4 f*(x), f*(y) = f*(z), f*(w) .

At least one of x,y,z,w is a member of B - A Since u,v = v,u ,

all u,veln , we may assume that (x,y,z,w) is of one of the following

forms:

(i) ai, aj, bk, bet

(ii) ai, a., ak, bet

(iii)abaa
j, k'

(iv) ai, bb
-i2 j2

a
-k2 -4

(v)ab
2 bk,j le 4

(vi)bbaa
j 2 -.le to

(vii) b kJ, ak, bet

(viii) bi, b., bk, bet

Because ai *, a.* < L , 1 < i, j < 2m , L < a.*, b.* < 2L ,
3

1 3

2L, 1 <i, j < n , all of the
1
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above cases ether than (iv) may be dealt with quickly and easily. As to

(iv), we need only note that, because of our choice of e , everything

works out nicely.

a.1 *, b.3 * < ak *, bt* iff (yai)
2
+

q,q.2
< (yak)

2
+ q,cit

iff a. < a
k1

iff f(ai) < fak)

----
iff (yf(ad)

2

(13

2
(yf(a

k
))

2
+ q,qt

2

iff f*(ai), f*(bi) < f*(ak), f*(bt)

qed.

Claim 2:

a.

For all i e (1, 2, ..., 2m} M leKn .

Proof:

Choose e > 0 as in Lemma 7, and apply Lemma 2 to obtain a

homomorphism f from (A - (a.) , D onto a substructure of
1 - (a.))

1

(fit, sa: e [a., a. ) Let f* be obtained from f as in
.3) 3 3+e ai

Lemma 7. Then f* is a homomorphism from M onto a substructure of

( 10,,kid.PickallYx9Y9z9weB4-(a.).

If (x,y,z,w) e B
4

- A
4

, then

(x,y,z,w) eE iff x*, y* < z*, w* iff f*(x), f*(y) < f*(z), f*(w)



If ( x,y,z,w) eA4 , then

(x,y,z,w) EE iff ( x,y,z,w) eD iff lf(x) - f(y)I < If(z) - f(w),

iff f*(x) , f*(y) < f*(z), f*(w) .

Claim 3:

Let {c1, of., ct) and [di, ...2 d) be two sets of distinct elements

from B - A . Then

Cl, c
t

,

en M 1,K
n

Kn ,

Proof:

We may assume that there exists , 0 < < t so that

c1 = di, = cl.h and [c +1,
...2 ct) n (dA41, d) = 0

Because of symmetry we need only show that, if f is a homomorphism

ci, of', C
/ n

from 111 onto a substructure of l 2 a
n

2 then

di, ...2 dt

n
. Define the function g:B - td1,

***2
d
t

) into lel

by

, if xet(f)

g(x) =
f(d.) , if x =12., .h 1 < j < t .

d12 d

We shall show that g is a homomorphism from M onto a sub-

n
structure of lit 2

n
. Pick any x,y,z,w eB -

l'
d
t

}
.

First, suppose (x,y, z,w) n (c c
4,

= .
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Then

-4i511111111111E91."--'"

(x,y,z,w) eE iff f(x), f(y) < f(z), f(w)

iff g(x), g(y) < g(z), g(w)

Now, suppose (x,y,z,w) fl {c1, c } # 0

Then (x,y,z,w) eB
4

- A
4

and, hence,

(x,y,z,w) eE iff x*, y* < z*, w*

For ueB {d1, y define u' by

u , if ui [c1,
u'

d., if x = c., dft + 1 < j <
3 3

Then g(u) = f(u1) .

Because c.1 *, c.* = d.*, d * and, for teB -

t *, c.* = t*, d.* , we know that
1

Hence,

dt#9 cl

x*, y* < z*, w* iff x'*, y'* < z'*, w'*

(x,y,z,w) eE 4 (x', y', z', w') eE

(f(x'), f(y'), f(z'), f(41)) eAn

(g(x), g(y), g(z), g(w)) eAn .

d1, d

Therefore, g is a homomorphism and M eK
n

. qed.

At this point we are ready to show the existence of the submodel

M
0

of M . We distinguish three cases as follows:



e K
b

( 1 )

( 2 )

bl, b

(3) 111 n K

b
12

..
*2

b b 1, **., b

(U) (2 < < n) M IK
n
A M eK

n

In Case (1), we let mb = m .

b1, bt

In Case (2), take Mo = M ; and, in

b b

Case (3), fake Mo = N 12

Then 2m kt
0

< 2m n ; and, from Claims 1, 2, 3, it follows that

Mo Kn; further; if neS(110)
2 1111 =:

'" 1 then han . This

completes the proof of Theorem 7.

The next situation we shall deal with is where measurement-

theoretic classes K
n

are constructed in terms of a dissimiratity

relation generated by another metric in In which has received atten-

tion in the literature of mathematical psychology.

2. The "Dominance" Metric

For convenience let us now change some of the referents of

some of the symbols used in the previous section of this chapter.

Given x = (xl, xn), Y = (571, yn) e I , let

x,y = max lx. - y. . We shall present a proof of

1 < i < n 1
i

Theorem 8

Let A
n

be the four-place relation on 1
n

given by xyA
n
zw



---
iff x,y

n
.< z,w

n
. Let K

n
be the class of all finite structures be-

ll 4 longing to H1S ((kn, A
n
)) . Then K

h
is not axiomatizable by a

universal sentence.

Lemma 8

We begin with some combinatorial results.

Let n > 2, Lel, L > 0 . Let £ be a maximal collection of

points qi e I
n

st L > H.3 (q.) > 0 , 1 < j < n , and q., q
j

= L, i j .

Then IZI = 2n and

NI,...,(1113=Ux...,xtlieln /x.e[0,L), 1 < i < n3
2

The reader is invited to verify lemma 8 for the case n = 2 We shall

show by induction that the lemma hiailii-Tor =Om
2 . -Suppose that-

the lemna holds for 2 < n < A and that is a maximal collection of

points in
A 1

Let

A0 = {(xl, xk4.1) e.t/xi <L,1<i<k+ 1}

Al = [(x1, x2, ..., xiva) est/xl = L)

A2 = {(xl, x2, ..., xk +1) est/xl < L, x2 = L}

A3 ((xi, x2, xk+1)
est/xl < L, x2 < L, x3 = L)

Ak = ((xl, xki.1) xit.4 < L, xk = L3

Ak41 = [(x1, xk4.1) xk < L, xk4.1 = L3

- 49 -



Then £ = A
0
U Al U ... U A

ft 1
. By the induction hypothesis, we know

I A1 I
< 2 A2 I < 241-1 ; I A3 I1 < 2-2 ' ' ' 9 1 A I

9

< 2 Also, IA0 1 < 1

and IA
41

I < 1 Therefore, lot! < 2
ft+1

. Also, since fit is maximal

andthereisawaytochooseelementsforeachA.so that IA-I = 2
ft-i

4
4

$
1 i

1 < i < ft+1 and IA
0

1 = 1 , we know that lot' = 2
k
4
1

and the above in-

equalities are actually equalities. Let

(6c1, )c .) eehce L3, 1 < i < J3
WNW, ,

By the induction hypothesis, we know that

and

(X
1 4,4,2 1Ck+1

e A
i

x
1

, ..., xi-1 < L,
xi

= L ,

(x
1.41' xic+1)

for 1 < i < k + 1 .

UsingtheabovefactandthefactthatifiA., then

p,q = L , we may show that, for (xl, xit+,) eAl , where i > 2

x
1

= x
2

= = xi_i = 0 . Then we may verify that

AO
(x1, "" xk+1)/x1 x2 X16.1 0)

Therefore,

k+1Z=Uxv...,x/(41./eI/x.eD, 13, 1 < i < k+13 .

qed.

Corollary

Let q1,
.. " gm

be any collection of points in

I
n

st q., q. = L , i / j , and m is maximal. Then m= 2n and there
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is a translation T:1
n n

such that

(T(qi)/1 < i < 111) ((xi, xn) ele/x .e 0, L1, 1 < j < n1

Now we are ready to characterize all collections of 2" - 1

distinct, pairwise equidistant (by the "dominance" metric) points in

1
n

. Given ie {1, n} , let map In into In -1 so that if

Ai
x = (xl, x

n
) , then x = (x

1,
1, 6..9

i
x
n
)

Lemma 9

Let n > 2, Let, L > 0 Let be a collection of 2" - 1

points qi, q
n

et
n

st 0 < n.(q.1 ) < L, I < j < n, 1 < i < 2
n
-1 ,

2 -1

and q., q. = L,i0j. Then there are numbers i
0'

j
0'

1 <i
0
< n

1.< jo < 2n-1 such that

0 Ai0
fql 9 ...9 q

2 -1

1 c: ((xl, xn4)/Xie{09L}9 1 .!S i < n-11

and

Proof:

(ii` For 1 < i < 2
n
-1, if i j

0 '

then II. (q.) e (0,L}
10

(ili)upeilandri.(p) = n.(q. ) i i0 , then

pa iff p = q
j0

One can verify that Lemma 9 holds for n = 2 . Now suppose

that it holds for all n st 2 < n < ft., and let be a collection of

244
-1
-1 points in It

441
satisfying the hypotheses of the lemma. Define

sets A
i

0 < i < A+1 in terms of ct exactly as was done in the proof
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A 41
of Lemma 8. Then, since A = 2 - 1

st

, there exists h , 0 < h < A41 ,

(a) If 0 < i # h , then A. = 2A
41-i

If 0 0 h , then IA01 = 1

If h = 0 , then lAhl = 0

If h 0 , then !Ahl = 21°1-h - 1

If h= 0, it follows from Lemma 8 that

= ((x x
A+1/ n

el /x.e (0,L], 1 < i < A+1) - ((0, 0, 0))

Then we may take io = A41 and jo so that q. e A
+1

.

JO )1

qed.

Thus we may assume that h > 1 . If h = A41 , then we may take

i = A+1 and j0 so that q, e A0 . So we now may assume that
0 0 Jo 0

1 < h < A It follows from Lemma 8 and the .act that p,q = L , for

distinct p, qa , that, for all i, j, if iith, 0 < i < j , and

reA.
J

Let

, Chen Hi(r)

= ((x114.1,

= 0 . Also, for reA0 and i h , Hi(r) = 0 .

xk+1)
k41-h

/(axi, xheV)

((x1, xh, xl(4.1) eAh)) . By our induction hypothesis, we

know what 'Ch looks like. Let (y1, so., y
k 1-h

) be the point of

le41-h
corresponding to the q. obtained when Lemma 9 is applied

JO

to X
h

Let i'
0

be the index 1 < i'
0
< A+1-h corresponding to

in the lemma. If y., [0,1,1 , then it is easy to verify that one
10

can satisfy the conclusion of Lemma 9 (for Ik 4
1
) by choosing

i0 = h + 1.(') and jo so that e A. and

(nh+1(q'J0 )' 1k+1(g
j0))

(Y1' Yk41-h)
We now need only

- 52-
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deal with the case where y., c [020 . Therefore, by the induction
10

hypothesis, we know that there is some element

k41-h

(P12 "" Pk41-h) e
(0,0 such that

Ch = (0,0
1-h

- ((pi "" Pk41-03

l44h
1 Pk41-h) `

fil"

Case 1: (p. 2 ""

Let a be the least positive integer such that 1)0 = L Then

one can show that, for ie (0, 1, k41) - (h, h40) if qsAi ,

then 11h(q) = 0 . Also, for all qeAh46 for which it is not the case

that (n
h+1

co "" nt+1(q) ) (P1' Pk+l-h)
one can show that

11h(q) = 0 .
Therefore, we may satisfy the conclusion of Lemma 9 by

choosing i0 = h and jo so that cli is the member of Ah4a for

which (n (q. )2 "" nA+1(q
jo
) (P12 Pk+l-h)h+1 jo

qed.

"12 ..., Pk41-h) et03k+1-hCase 2:

In this case one should choose i
0

= h and j
0

so that

q. e A0 Then one can verify the conclusion of lemma 9.

JO
Our next goal is to prove a collinearity result like Lemma 3.

only for the "dominance" metric.

Lemma 10

Let Lel , L > 0 n > 2 .

Let ql, q2n_i
e in st qi, qj = L, i j . Let x,y,z ein
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st x,qi = x,q1, y,qi = y,q1, z,qi = z,q1, 1 < i < 2n-1 , and x,q1 < L ,

y,q1 < L, z,q
1
< L . Then x, y, and z are collinear.

Proof: Let et [q1,

Let X = (xein/ x,qi = x,q1 and x,q1 < L3 We need to show

that if x,y,z eX , then x,y, and z are collinear. Because transla-

tions preserve lines, we may assume that 0 < 11.(q.1 ) < L , for

1 < i < andand 1 < j < n . Hence, Lemma 9 is applicable. Moreover,

we- may assume that i
o

= n . Let e = II. (q. ) Note that, for all

10 JO

(x12...,x11)0,0<x.<L,1 <i<n. Let

X' = (xeNW TcTil = LJ23 , X" =X Xl

Claim 1: X' = (L /2 )n

By Lemma 9, we know that, for all i , 1 < i < n , there exist

j, j' , 1 < j , it < 2n-1 st ni(qi) = 0 and
3

11.3. (q.,) = L . Because of

this, one can show that, for all (x1, x
n
) e X' , x.

2 9

1 < i < n . It is also straightforward to verify that (L/23n c: X' .

qed.

Now,for1<i<n-1,1etc.map X" into {0,L} as

follows, given x = (x
1

, x
n
) e X"

0 , if xi 0 x,q1

c.(x) =
L , otherwise



Claim 2: For all x,y e W' and ie (1, ..., n-112 ci(x) = ci(y) .

We shall show that, for all xee , (c1(x), cn_1(x), e)

Suppose the contrary. Then there exists

xer st p(x) = (ci(x), cn_1(x), 0) eZ and

q(x) = (ci(x), 2 c
n-1

(x) L) .

2cx1 01
1

Therefore, x, q1 = x2p (x) > I xi - ci(x) I =
211 2c.

L - x., otherwise ,

0
1

for all 1 < i < n-1 .

Fromthisonecanshowthatlx.-c.(x)I < x,q
1

,

for 1 < i < n-1 .

Therefore, since x,p(x) = x,q(x) = x,q1, xn = x,q1 and

L - xn = x,qi . Hence, x,q1 = 2 , which is a contradiction, because

xee . Now pick any x,y . By the above we know that

(c1(x""cn...1(x".".=(c1
(Y), ...2 c

n-1
(y), e) , so

30

c.(x) = c (y) , 1 < i < n-1 . qed.

Claim 3: If e # 0 , then ee (0,L) .

Suppose there is an element xeICH . Let

p (x) = (el (x) , 2 Cr1.40020a.tisabolie212C.'C.001 < x,q
1

2

for 1 < i < n-1 . Therefore, Ixn-el = x,q1 , from which it follows

that ee (0,L) .
qed.

Note that if X!' = , then our lemma follows immediately from

Claim 1; thus we may assume that X" # 0 By virtue of Claim 2, we
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may write 'c.1 ' to indicate the single member of (c.1 (x)/xeHu) .

Because of Claim 3 and Lemma 9, we may distinguish the following two

cases:

(I) (c1,
n-1

0) a

(c1, cn-1, L) iZ

(II) (c1, 0) ict

(c1, "" cn-12 L) a

(I): Define c
n

= L .

,
2c

1
-I,

Let g = {(L -c L-c ) + X \
2c -L

n )10 < X < Ll1,
L 2 .6" L

We shall show that Hu c , Pick any x = (xl, x
n
) .

-
Define c. = L -

1

Fori<n,consit-r(c,a... c L) el . Since
1 ***2 1 2 n-12

(c1, ..., cn_1, 0) ect 2 x
n

=x2 q
1
OL/2 . Hence, IL - x

n
lix

2C11 ;

and, therefore, Ixi ail = x'cli

(
1

Let X = x,q1 . Then x. =
L X, if ci = 0

1
, 1 < i < n-1 and

x
n

= X . Therefore,

x = (L -c1,
***2

L-c
n
) + X

/
2c

1
-L 2c

n
-L

L ***2

)

So Hu c . qed.

Note that X' C I , because we may choose X =
2

Therefore X C U

In Case (II) one can similarly verify that all members of H



are collinear. Therefore, Lemma 10 holds.

Lemma 11

Then

The following trivial lemma will be useful for reference.

Let Lek , L > 0 . Let {q1, q = (0, 2Lln - (0)11

2 -1

0 < n. (q.) < 2L , 1 < i < n, 1 < j < 2n-1

(ii) qi, qj = 2L ,iAj

(iii) For all xelt st 0 < x < L, if pee is given by

ni(p) = x, 1 < i < n, then, for all 1 < i, j < 2n-1 , qi,p = qvp

and L < qi,p < 2L .

Let Lemma 12 be the lemma whose statement consists of exactly

the same symbols used in the statement of Lemma 6. Theorem 8 is an

immediate cc sequence of Lemma 12, which we shall now prove.

Pick any n, m as in the statement of Lemma 12. Let

A = (a1, **"
a2m3 and D be as in Lemma 2. Choose b1, ..., b

2n-1

st a
2m

< b
1
< < b . Let B = AU (b b ) . Let L be

2
n
-1

""
2
n
-I

be a real number larger than a2m . Let q12-7.., q be as in

2 -1

Lemma 11. For each xeB , define xicein by

x* =
(ai, ai) , if x = ai

.
, if x = b.

Let E = DU ((x,y,z,w) eB4 - A4/ x*, y* < z*, w*) Let tit = (B, E) .

At this point it should surprise nobody that the obvious analogues of
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Lemma 7 and Claims 1, 2, 3 in the proof of Lemma 6 may all be established.

Therefore, Theorem 8 holds.

Let us finish this chapter by noting that not every metric in

1 n leads to classes K
n which fail to be universally axiomatizable.

For example, let p be the metric in In given by

gx,y)
1 , if x y

0, if x = y .

Let K
n be the class of all finite members of H

1
S(R

n
, A

n
) , where

xyAnzw iff p(x,y) < p(z,w) , for x,y,z,w an . One can easily see

that R
h is universally axiomatized by the following axioms in a

language contai'aing the four-place relation symbol D :

(1) abDaa is an equivalence relation.

(ii) abDcd [abOaa (cdDcc)] .



APPENDIX

The theorems presented in the main body of this thesis have

shown that it is impossible to achieve various rep.esentation results

with a finite number of necessary universal axioms. The theorem to

follow establishes the impossibility of obtaining a combined representa-

tion-uniqueness result by using a specific necessary non-universal axiom,

T , along with a finite number of necessary universal axioms.

Theorem

Let A be the relation x - y < z - w on the real numbers.

Let K be the class of all finite In = (A, D) , DC A4 , such that fl

is embeddable in (t, A) by a homomorphism which is unique up to a

linear transformation.

(1) K is not universally axiomatizable, because S(K) t K .

(2) Let E be the binary relation (abDaa A aaDab) on A .

Let T be the following sentence:

pa,b,csA)(afbAatcAbfc) --, (aa,b,c,deA)

(a +bAatcAabDcdAcdDab) .

Then, for all 1110( , T tr fl .

(3) There is no universal sentence a such that, for all

finite M ,

MeK iff (a A T) tr tit ,
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Part (1) follows from (2), which may be established by showing

that if 'r fails to hold in a structure MeK , then one can violate

the uniqueness condition for membership in K by defining homomorphisms

similar to those involved in Lemma 2. Part (3) may be proved by using

Theorems 15, 16 on p. 39 of Suppes-Zinnes (13]. These theorems enable

one to show that if 1R is a 2m-element model as constructed in the

proof of Theorem 3, then, for every aet(p) , there exists an extension

h of ma st heK .
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